Hippo/Mst1 stimulates transcription of the proapoptotic mediator NOXA in a FoxO1-dependent manner.

نویسندگان

  • Karel Valis
  • Lubomir Prochazka
  • Evzen Boura
  • Jaromira Chladova
  • Tomas Obsil
  • Jakub Rohlena
  • Jaroslav Truksa
  • Lan-Feng Dong
  • Stephen J Ralph
  • Jiri Neuzil
چکیده

The proapoptotic protein Noxa, a member of the BH3-only Bcl-2 protein family, can effectively induce apoptosis in cancer cells, although the relevant regulatory pathways have been obscure. Previous studies of the cytotoxic effects of α-tocopheryl succinate (α-TOS) on cancer cells identified a mechanism whereby α-TOS caused apoptosis requiring the Noxa-Bak axis. In the present study, ab initio analysis revealed a conserved FoxO-binding site (DBE; DAF-16 binding element) in the NOXA promoter, and specific affinity of FoxO proteins to this DBE was confirmed by fluorescence anisotropy. FoxO1 and FoxO3a proteins accumulated in the nucleus of α-TOS-treated cells, and the drug-induced specific FoxO1 association with the NOXA promoter and its activation were validated by chromatin immunoprecipitation. Using siRNA knockdown, a specific role for the FoxO1 protein in activating NOXA transcription in cancer cells was identified. Furthermore, the proapoptotic kinase Hippo/Mst1 was found to be strongly activated by α-TOS, and inhibiting Hippo/Mst1 by specific siRNA prevented phosphorylation of FoxO1 and its nuclear translocation, thereby reducing levels of NOXA transcription and apoptosis in cancer cells exposed to α-TOS. Thus, we have demonstrated that anticancer drugs, exemplified by α-TOS, induce apoptosis by a mechanism involving the Hippo/Mst1-FoxO1-Noxa pathway. We propose that activation of this pathway provides a new paradigm for developing targeted cancer treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and Cellular Pathobiology Hippo/Mst1 Stimulates Transcription of the Proapoptotic Mediator NOXA in a FoxO1-Dependent Manner

The proapoptotic protein Noxa, a member of the BH3-only Bcl-2 protein family, can effectively induce apoptosis in cancer cells, although the relevant regulatory pathways have been obscure. Previous studies of the cytotoxic effects of a-tocopheryl succinate (a-TOS) on cancer cells identified a mechanism whereby a-TOS caused apoptosis requiring the Noxa-Bak axis. In the present study, ab initio a...

متن کامل

Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice.

Mammalian sterile 20-like kinase 1 (Mst1) is a mammalian homolog of Drosophila Hippo, the master regulator of cell death, proliferation, and organ size in flies. It is the chief component of the mammalian Hippo pathway and promotes apoptosis and inhibits compensatory cardiac hypertrophy, playing a critical role in mediating heart failure. How Mst1 is regulated, however, remains unclear. Using g...

متن کامل

Regulation of neuronal cell death by MST1-FOXO1 signaling.

The protein kinase mammalian Sterile 20-like kinase 1 (MST1) plays a critical role in the regulation of cell death. Recent studies suggest that MST1 mediates oxidative stress-induced neuronal cell death by phosphorylating the transcription factor FOXO3 at serine 207, a site that is conserved in other FOXO family members. Here, we show that MST1-induced phosphorylation of FOXO1 at serine 212, co...

متن کامل

Evaluating the role of the Hippo pathway in the onset and disease progression of the SOD1 mouse model of amyotrophic lateral sclerosis

The Hippo pathway is a cell signaling pathway involved in organ size regulation and tumorigenesis in mammals. This pathway regulates the activity of Yes-associated protein (YAP), a transcriptional coactivator which binds to the transcription factor TEAD to promote expression of genes controlling growth and proliferation of tissues, as well as inhibition of apoptosis. The Hippo pathway has recen...

متن کامل

Hippo on the move

Hippo and its mammalian homologs MST1 and MST2 are important tumor suppressors best known for their effects on cell proliferation and survival; however, accumulating evidence suggests that these kinases are involved in a wide range of cellular processes, including regulation of cell morphology, adhesion and migration. In the canonical pathway activated Hippo/ MST1/2 kinase phosphorylates and ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 71 3  شماره 

صفحات  -

تاریخ انتشار 2011